Chromatin clustering¶
-
calcGNMDomains(modes, method=<function Discretize>, **kwargs)[source]¶ Uses spectral clustering to separate structural domains in chromosomes and proteins.
Parameters: - modes (
ModeSet) – GNM modes used for segmentation - method (func) – Label assignment algorithm used after Laplacian embedding of loci.
- modes (
-
KMeans(V, **kwargs)[source]¶ Performs k-means clustering on V. The function uses
sklearn.cluster.KMeans(). See sklearn documents for details.Parameters: - V (
ndarray) – row-normalized eigenvectors for the purpose of clustering. - n_clusters (int) – specifies the number of clusters.
- V (
-
Hierarchy(V, **kwargs)[source]¶ Performs hierarchical clustering on V. The function essentially uses two scipy functions:
linkageandfcluster. Seescipy.cluster.hierarchy.linkage()andscipy.cluster.hierarchy.fcluster()for the explaination of the arguments. Here lists arguments that are different from those of scipy.Parameters: - V (
ndarray) – row-normalized eigenvectors for the purpose of clustering. - inconsistent_percentile – if the clustering criterion for
scipy.cluster.hierarchy.fcluster()
is
inconsistentand threshold t is not given (default), then the function will use the percentile specified by this argument as the threshold. :type inconsistent_percentile: doubleParameters: n_clusters – specifies the maximal number of clusters. If this argument is given, then the function will automatically set criterion to
maxclustand t equal to n_clusters. :type n_clusters: int- V (
-
showLinkage(V, **kwargs)[source]¶ Shows the dendrogram of hierarchical clustering on V. See
scipy.cluster.hierarchy.dendrogram()for details.Parameters: V ( ndarray) – row-normalized eigenvectors for the purpose of clustering.
-
GaussianMixture(V, **kwargs)[source]¶ Performs clustering on V by using Gaussian mixture models. The function uses
sklearn.micture.GaussianMixture(). See sklearn documents for details.Parameters: - V (
ndarray) – row-normalized eigenvectors for the purpose of clustering. - n_clusters (int) – specifies the number of clusters.
- V (
-
BayesianGaussianMixture(V, **kwargs)[source]¶ Performs clustering on V by using Gaussian mixture models with variational inference. The function uses
sklearn.micture.GaussianMixture(). See sklearn documents for details.Parameters: - V (
ndarray) – row-normalized eigenvectors for the purpose of clustering. - n_clusters (int) – specifies the number of clusters.
- V (