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CHAPTER
ONE

INTRODUCTION

This tutorial describes how to calculate signature dynamics for a family of proteins with similar structures using
Elastic Network Models. This method creates an ensemble of aligned structures and calculates statistics such as
means and standard deviations on various dynamic properties including mode profiles, mean square fluctuations and
cross-correlation matrices. It also includes tools for classifying family members based on their sequence, structure and
dynamics.

The theory and usage of this toolkit will be described in [SZ/8].

1.1 Required Programs

The latest version of ProDy_ is recommended along with NumPy_ and Matplotlib_. IPython_ is highly recom-
mended for interactive usage.

1.2 Getting Started

This tutorial contains three parts. In the first part, we will have a quick walk-through on the SignDy' calculations
and functions using the example of type-I periplasmic binding protein (PBP-I) domains, in which case the data is
convienient collected from the Dali server’ [LH10]. The second part will be a more detailed periplasmic binding
protein (PBP-I) domains, in which case the data is convieniently collected from the Dali server® [LH10]. The second
part will be review how to use the CATH database* [IS21] to build the ensemble. The third part will be a more detailed
tutorial on building an ensemble ‘manually’ from scratch, and try to reproduce the figures presented in [SZ/8].

We recommend that you will follow this tutorial by typing commands in an [Python session, e.g.:

‘$ ipython

or with pylab environment:

’$ ipython --pylab

First, we will make necessary imports from the ProDy_, NumPy_ and Matplotlib_ packages.

In [1]: from prody import =
In [2]: from numpy import =«

In [3]: from matplotlib.pyplot import =

In [4]: ion ()

Thttp://prody.csb.pitt.edu/test_prody/tutorials/signdy_tutorial/
Zhttp://ekhidna2.biocenter.helsinki.fi/dali/
3http://ekhidna2.biocenter.helsinki.fi/dali/
“https://www.cathdb.info/
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We have included these imports in every part of the tutorial, so that code copied from the online pages is complete.
You do not need to repeat imports in the same Python session.

1.3 How to Cite

If you benefited from SignDy Calculations in your research, please cite the following paper:

2 Chapter 1. Introduction



CHAPTER
TWO

OVERVIEW

The first step in signature dynamics analysis is to collect a set of related protein structures and build a PDBEnsemble.
This can be achieved by multiple routes: a query search of the PDB using blastPDB () or searchDali (),
extraction of PDB IDs from the Pfam or CATH database, or input of a pre-defined list.

We demonstrate the Dali’ method here in the first part of the tutorial. The usage of Pfam® and CATH’ methods are
described in the database tutorial (under construction) and the function blastPDB () is described in the Structure
Analysis Tutorial®.

We apply these methods to the PBP-I domains, a group of protein structures originally found in bacteria for trans-
port of solutes across the periplasmic space and later seen in various eukaryotic receptors including ionotropic and
metabotropic glutamate receptors. We use the N-terminal domain of AMPA receptor subunit GIuA2 (gene name
GRIA2%) as a query.

First, make necessary imports from ProDy and Matplotlib packages if you haven’t already.

In [1]: from prody import =«
In [2]: from pylab import =«

In [3]: ion{()

2.1 Prepare ensemble (using Dali)

First we use the function searchDali () to search the PDB, which returns a DaliRecord object that contains a
list of PDB IDs and their corresponding mappings to the reference structure.

In [4]: dali_rec = searchDali('3H5V','A")

In [5]: dali_rec
Out[5]: <prody.database.dali.DaliRecord at 0x7flddcfa77c50>

If DALI times out then, you can use the following code to fetch the data afterwards.

In [6]: while not dali_rec.isSuccess:
dali_rec.fetch ()

Next, we get the lists of PDB IDs and mappings from dali_rec, parse the pdb_ids to get a list of AtomGroup
instances:

Shttp://ekhidna2.biocenter.helsinki.fi/dali/

Shttps://pfam.xfam.org/

"http://www.cathdb.info/
8http://prody.csb.pitt.edu/tutorials/structure_analysis/blastpdb.html
9https://www.uniprot.org/uniprot/P42262
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In [7]: pdb_ids = dali_rec.filter (cutoff_len=0.7, cutoff_rmsd=1.0, cutoff_Zz=10)
In [8]: mappings = dali_rec.getMappings ()

In [9]: ags = parsePDB(pdb_ids, subset='ca')

In [10]: len(ags)

Out[10]: 963

Then we provide ags together with mappings to buildPDBEnsemble (). We set the keyword argument

seqid=20 to account for the low sequence identity between some of the structures.

In [11]: dali_ens = buildPDBEnsemble (ags, mapping=mappings, seqid=20)
In [12]: dali_ens
Out[12]: <PDBEnsemble: Unknown (50 conformations; 773 atoms)>

Finally we save the ensemble for later processing:

In [13]:
Out[13]:

saveEnsemble (dali_ens,
'PBP-I.ens.npz'

"PBP-I"')

2.2 Mode ensemble

For this analysis we’ll build a ModeEnsemble by calculating normal modes for each member of the PDBEnsemble.
You can load a PDB ensemble at this stage if you already have one. We demonstrate this for the one we just saved.

‘In [14]: dali_ens = loadEnsemble('PBP-I.ens.npz')

Then we calculated GNM modes for each member of the ensemble. There are options to select the model (GNM by
default) and the way of considering non-aligned residues by setting the trim option (default is reduceModel (),
which treats them as environment).

In [15]: gnms = calcEnsembleENMs (dali_ens, model='GNM', trim='reduce')
In [16]: gnms
Out [16]: <ModeEnsemble: 50 modesets (20 modes, 773 atoms)>

We can also save the mode ensemble as follows:

In [17]:
Out[17]:

saveModeEnsemble (gnms,
'PBP-I.modeens.npz’

"PBP-I')

We can load in a mode ensemble at this point as follows:

‘In [18]: gnms = loadModeEnsemble ('PBP-I.modeens.npz')

2.3 Signature dynamics
Signatures are calculated as the mean and standard deviation of various properties such as mode shapes and mean
square fluctations.

For example, we can show the average and standard deviation of the shape of the first mode (second index 0). The first
index of the mode ensemble is over conformations.

In [19]: showSignatureMode (gnms[:, 0]);

Chapter 2. Overview
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We can also show such results for properties involving multiple modes such as the mean square fluctuations from the
first 5 modes or the cross-correlations from the first 20.

In [20]: showSignatureSgFlucts(gnms[:, :5]);
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In [21]: showSignatureCrossCorr (gnms[:, :20]);

2.3. Signature dynamics 5
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We can also look at distributions over values across different members of the ensemble such as inverse eigenvalue.
We can show a bar above this with individual members labelled like [J/K/5]. We can select particular members to
highlight with arrows by putting their names and labels in a dictionary.

We plot the variance bar for the first five modes (showing a function of the inverse eigenvalues related to the resultant
relative size of motion) above the inverse eigenvalue distributions for each of those modes. To arrange the plots like
this, we use the :class:~matplotlib.gridspec.GridSpec method of Matplotlib.

In [22]: highlights = {'3h5vA_ca': 'GluA2', '3021C_ca': 'GluA3',
e '3h6gA_ca': 'GluK2'}

In [23]: from matplotlib.gridspec import GridSpec

In [24]: gs = GridSpec(ncols=1, nrows=2, height_ratios=[1, 10], hspace=0.15)

In [25]: subplot(gs([0]);

In [26]: showVarianceBar (gnms[:, :5], fraction=True, highlights=highlights);

In [27]: xlabel(''");

In [28]: subplot(gs[l]);

In [29]: showSignatureVariances(gnms[:, :5], fraction=True, bins=80, alpha=0.7);

In [30]: xlabel('Fraction of inverse eigenvalue');

6 Chapter 2. Overview
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2.4 Spectral overlap and distance

Spectral overlap, also known as covariance overlap as defined in [BH02], measures the overlap between two covariance
matrices, or the overlap of a subset of the modes (a mode spectrum).

‘In [31]: so_matrix = calcEnsembleSpectralOverlaps(gnms([:, :1])

‘In [32] : showMatrix (so_matrix);

2.4. Spectral overlap and distance 7
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We can then calculate a tree from its arccosine, which converts the overlaps to distances:

In [33]: labels = gnms.getLabels()

In [34]: so_tree = calcTree (names=labels,
e distance_matrix=arccos (so_matrix),
et method="upgma')

This tree can be displaced using the :func:.showTree function. The default format is ASCII text but we can change it
to plt to get a figure:

In [35]: showTree(so_tree, 'plt');

"
w
. mE=
204
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T
0.0 0.2 0.4 0.6
distance

We can reorder the spectral overlap matrix using the tree as follows:

In [36]: reordered_so, new_so_indices = reorderMatrix (names=labels,
e matrix=so_matrix,

8 Chapter 2. Overview
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e tree=so_tree)

Both PDBEnsemble and ModeEnsemble objects can be reordered based on the new indices:

In [37]: reordered_ens = dali_ens[new_so_indices]

In [38]: reordered_gnms = gnms[new_so_indices, :]

2.5 Comparing with sequence and structural distances

The sequence distance is given by the (normalized) Hamming distance, which is calculated by subtracting the percent-
age identity (fraction) from 1, and the structural distance is the RMSD. We can also calculate and show the matrices
and trees for these from the PDB ensemble.

First we calculate the sequence distance matrix:

In [39]: segid_matrix = buildSegidMatrix(dali_ens.getMSA())

In [40]: seqgdist_matrix = 1. - segid_matrix

We can visualize the matrix using showMatrix ():

In [41]: showMatrix(seqgdist_matrix);
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0.0050
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We can also construct a tree based on this distance matrix:

In [42]: seqgdist_tree = calcTree (names=labels,
e distance_matrix=seqdist_matrix,
e method="upgma')

Similarily, once we obtain the RMSD matrix using PDBEnsemble.getRMSDs (), we can calculate the structure-
based tree:

In [43]: rmsd_matrix = dali_ens.getRMSDs (pairwise=True)

In [44]: showMatrix (rmsd_matrix);

2.5. Comparing with sequence and structural distances 9
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In [45]: rmsd_tree = calcTree (names=labels,
et distance_matrix=rmsd_matrix,
e method="upgma')
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We could plot the three trees one by one. Or, it could be of interest to put all three trees constructed based on different
distance metrics side by side and compare them:

In [46]: showTree (seqdist_tree, format='plt')

In [47]: title('Sequence')
Out[47]: Text (0.5,1, 'Sequence')

In [48]: showTree (rmsd_tree, format='plt')

In [49]: title('Structure')
Out [49]: Text (0.5,1, 'Structure")

In [50]: showTree(so_tree, format='plt')

In [51]: title('Dynamics')
Out[51]: Text (0.5,1, 'Dynamics')

10 Chapter 2. Overview
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2.5. Comparing with sequence and structural distances
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This analysis is quite sensitive to how many modes are used. As the number of modes approaches the full number,
the dynamic distance order approaches the RMSD order. With smaller numbers, we see finer distinctions. This is
particularly clear in the current case where we used just one mode.

12 Chapter 2. Overview



CHAPTER
THREE

DATA COLLECTION WITH CATH

3.1 Navigating the CATH tree

The first step in signature dynamics analysis is to collect a set of related protein structures and build a PDBEnsemble.
This can be achieved by multiple routes: a query search of the PDB using blastPDB () or searchDali (),
extraction of PDB IDs from the Pfam or CATH database, or input of a pre-defined list.

Here, we demonstrate the usage of CATH for ensemble building.

First, make necessary imports from ProDy_, NumPy_ and Matplotlib_ packages if you haven’t already.

In [1]: from prody import =«
In [2]: from pylab import =«

In [3]: ion{()

First, we initialise a CATHDB object. By default, this is done by downloading data from the CATH website.

In [4]: cath = CATHDB()

In [5]: cath
Out [5]: <CATHDB: 5 members>

We can also use this object to save this data to an . xm1 file and load it later:

\In [6]: cath.save('cath.xml')

’In [7]: cath = CATHDB('cath.xml")

One way of using the CATHDB class is to navigate the CATH tree, using modified versions of methods and properties
inherited from base classes in :module:‘~xml.etree.ElementTree*.

The root of the tree and all other elements in it are instances of the CATHElement class, which is based on
Element!?, allowing us to easily navigate the CATH tree structure using parent/child relationships as follows:

In [8]: root = cath.root

In [9]: root
Out[9]: <CATHElement: root (5 members)>

In [10]: node = root.getchildren/()

In [11]: node
Out[11]:

10http://docs.python.org/library/xml.etree.elementtree.html#xml.etree. Element Tree. Element

13
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<CATHCollection:

[<CATHElement: 1 (5 members) >
<CATHElement: 2 (21 members) >
<CATHElement: 3 (14 members) >
<CATHElement: 4 (1 members)>
<CATHElement: 6 (2 members)>]>

Any branching point node containing a collection of children is an instance of the CATHCollection class, which
is based on the CATHE lement class but has additional and modified properties and methods.

For example, collections return a list of values for the properties cath (CATH ID) and name, while elements return
single values:

In [12]: node.name
Out[12]:
['Mainly Alpha',
'Mainly Beta',
'Alpha Beta',
'Few Secondary Structures',
'Special']

In [13]: node.cath
Out[13]: ['1l', '2', '3', '"4', '6']

In [14]: element = node[0]

In [15]: element.name
Out[15]: 'Mainly Alpha'

In [16]: element.cath
Out[16]: '1'

3.2 Searching CATH

We can also use the CATHDB class to find a particular part of the CATH hierarchy by CATH ID:

In [17]: node = cath.find('1.10.8")

In [18]: node.name
Out[18]: 'Helicase, Ruva Protein; domain 3'

‘We can also then examine its children:

In [19]: node.getchildren () .name
Out [19]:
['"DNA helicase RuvA subunit, C-terminal domain',
'N-terminal domain of phosphatidylinositol transfer protein seclédp’',
'Albumin-binding domain',
'Superfamily 1.10.8.50",
'Superfamily 1.10.8.60",
'Glutamate—-tRNA synthetase, class I, anticodon-binding domain 1°',
'Magnesium chelatase subunit I, C-Terminal domain',
'Ribosomal RNA adenine dimethylase-like, domain 2',
'Photosystem I PsaF, reaction centre subunit III',
'Superfamily 1.10.8.130",
'PDCD5-1ike’,
'DNA primase S; domain 2°',
'Carbon monoxide dehydrogenase alpha subunit. Chain M, domain 1°',

14 Chapter 3. Data Collection with CATH
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'Replisome organizer (g39p helicase loader/inhibitor protein)',
'Sirohaem synthase, dimerisation domain',

'CofD-1like domain',

'DNA polymerase III clamp loader domain like',

'"HI0933 insert domain-like',

'putative rabgap domain of human tbcl domain family member 14 like domains',

'ABC transporter ATPase domain-like',

'uncharacterized protein spl917 domain',

'PG08l6-1like’,

'PG08l6-1like’,

'Bacterial muramidase’',

'3, 6—anhydro-alpha-l-galactosidase’',

'nsp7 replicase',

'Uncharacterised protein PF01937, DUF89, domain 1°',
'Internalin N-terminal Cap domain-like',

'Enoyl acyl carrier protein reductase',

'RecR Domain 1',

'Helical domain of apoptotic protease-activating factors',
'Vesicular stomatitis virus phosphoprotein C-terminal domain',
'ppGaNTase-T1 linker domain-like',

'Superfamily 1.10.8.470"',

'Superfamily 1.10.8.480",

'Ced-4 linker helical domain-like',

'"HAMP domain in histidine kinase',

'ExsD N-terminal domain-like',

'DNA polymerase alpha-primase, subunit B, N-terminal domain',
'FHIPEP family, domain 3',

'Proto-chlorophyllide reductase 57 kD subunit B',
'Antirestriction protein ArdA, domain 2°',

'Hypothetical protein YfmB',

'Superfamily 1.10.8.590",

'Phage phi29 replication organiser protein pl6.7-1like’,
'SirC, precorrin-2 dehydrogenase, C-terminal helical domain-like',
'"ORF12 helical bundle domain-like',

'Cytochrome C biogenesis protein',

'Uncharacterised protein PF13642 yp_926445, C-terminal domain',
'Superfamily 1.10.8.660",

'Ypt /Rab-GAP domain of gyplp, domain 2°',

'Bacteriophage clamp loader A subunit, A domain',
'Superfamily 1.10.8.710",

'Region D6 of dynein motor',

'Superfamily 1.10.8.730"',

'Superfamily 1.10.8.740",

'Phosphoribosylformylglycinamidine synthase, linker domain',
'Haem-binding uptake, Tiki superfamily, ChaN, domain 2',
'Superfamily 1.10.8.770",

'RNA-dependent RNA polymerase, slab domain, helical subdomain-like',

'D-family DNA polymerase, DP1l subunit N-terminal domain',
'Daxx helical bundle domain',

'Ribosome-associated complex head domain',
'Histone-lysine N methyltransferase , C-terminal domain-like',
'Enterocin 7a-like’',

'Alpha-glycerophosphate oxidase, cap domain',

'Birnavirus VP3 protein, domain 2',

'Superfamily 1.10.8.890",

'Superfamily 1.10.8.900',

'"Protein of unknown function DUF1465",

'Uncharacterised protein, phage p2 ORF12',

3.2. Searching CATH

15
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'Filoviridae VP35, C-terminal inhibitory domain, helical subdomain',
'Superfamily 1.10.8.960",

'Flavivirus envelope glycoprotein M-like',

'Superfamily 1.10.8.990',

'Ornithine 4,5 aminomutase S component, alpha subunit-like',
'Superfamily 1.10.8.1010",

'RecQ-mediated genome instability protein 1, N-terminal domain',
'Superfamily 1.10.8.1040"',

'"Antitoxin VbhA-like',

'Corynebacterium glutamicum thioredoxin-dependent arsenate reductase, N-terminal domairp

'Superfamily 1.10.8.1070",

'Superfamily 1.10.8.1080"',

'Histone RNA hairpin-binding protein RNA-binding domain',
'Bacterial toxin RNase RnlA/LsoA, C-terminal Dmd-binding domain',
'Superfamily 1.10.8.1160",

'Superfamily 1.10.8.1170",
'Superfamily 1.10.8.1180",
'Superfamily 1.10.8.1190"',
'Superfamily 1.10.8.1210",
'Superfamily 1.10.8.1220",

'Superfamily 1.10.8.1240",

'Glutaminyl-tRNA synthetase, non-specific RNA binding region part 1, domain 1°',
'Superfamily 1.10.8.1310"',

'Superfamily 1.10.8.1320",

'Intein homing endonuclease, domain III']

L

Lastly, the CATHDB object can be used to find different CATH domains within a particular PDB structure:

In [20]: result = cath.search('3kg2A")

In [21]: result.name

Out[21]:

['Superfamily 1.10.287.70"',
'Superfamily 3.40.50.2300"',
'Superfamily 3.40.50.2300",
'Periplasmic binding protein-like II',
'Periplasmic binding protein-like II']

In [22]: result.getSelstrs()

Out [22]:

['resindex 500 to 621 or resindex 777 to 808",
'resindex 104 to 239 or resindex 346 to 376",
'resindex 1 to 103 or resindex 240 to 345",
'resindex 384 to 489 or resindex 724 to 773",
'resindex 490 to 499 or resindex 622 to 723']

This iGluR example also illustrates that CATH domains may also not correspond to biological domains identified by
other methods.

The N-terminal domain (NTD; residues 1 to 376), a type-I PBP domain, is split into CATH domains corresponding to
the two lobes, which each belong to ‘Superfamily 3.40.50.2300’.

Likewise, the two lobes of the ligand-binding domain (LBD) are assigned as separate domains that both belong to
‘Periplasmic binding protein-like II’, which is usually the whole bi-lobed clamshell structure.

3.3 Getting atomic structures from CATH and building ensembles

We can also get PDB IDs associated with particular levels:

16 Chapter 3. Data Collection with CATH
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In [23]: node

cath.find('1.10.8.40")

In [24]: node.getPDBs ()

Out [24]:
["2]5yA",
'295yB"',
'2vdbB"',
'1tf0B',
'lgabA’',
'"lprbA',
'2n35A",
'2jwsA',
'2kdlA’,
'21lhcA’,
'21hgA"',
'2mh8A",
'2fslA’,
'1gjsAa’,
'1gjta’]

Two other useful methods retrieve the associated CATH domains and selection strings.

In [25]: node.getDomains ()

Out [25] :

[<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:
<CATHElement:

295yA00>,
295yB00>,
2vdbB00>,
1t£0B0OO>,
lgabA00>,
lprbA00>,
2n35A00>,
29jwsA00>,
2kd1A00>,
21hcA00>,
21hgA00>,
2mh8A00>,
2fs1A00>,
1gjsA00>,
1gjtA00>]

In [26]: node

Out[26] :
['resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex
'resindex

e e e e e e e e

.getSelstrs()

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

61",
61",
55",
537,
53",
53",
527,
56",
56",
56",
56",
56",
56",
65",
65"']

We can combine all of these together to fetch and parse structures from the PDB and make the appropriate selections

3.3. Getting atomic structures from CATH and building ensembles

17
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at the same time:

In [27]: proteins = node.parsePDBs (subset='ca')

In [28]: proteins

Out [28]:

[<Selection: 'resindex 1 to 61' from 2j5yA_ca (60 atoms)>,

<Selection: 'resindex 1 to 61' from 2j5yB_ca (60 atoms)>,

<Selection: 'resindex 1 to 55' from 2vdbB_ca (54 atoms)>,

<Selection: 'resindex 1 to 53' from 1tfO0B_ca (52 atoms)>,

<Selection: 'resindex 1 to 53' from lgabA_ca (52 atoms; active #0 of 20 coordsets)>,
<Selection: 'resindex 1 to 53' from lprbA_ca (52 atoms)>,

<Selection: 'resindex 1 to 52' from 2n35A_ca (51 atoms; active #0 of 20 coordsets)>,
<Selection: 'resindex 1 to 56' from 2jwsA_ca (55 atoms; active #0 of 20 coordsets)>,
<Selection: 'resindex 1 to 56' from 2kdlA_ca (55 atoms; active #0 of 20 coordsets) >,
<Selection: 'resindex 1 to 56' from 2lhcA_ca (55 atoms; active #0 of 20 coordsets)>,
<Selection: 'resindex 1 to 56' from 21lhgA_ca (55 atoms; active #0 of 10 coordsets)>,
<Selection: 'resindex 1 to 56' from 2mh8A_ca (55 atoms; active #0 of 10 coordsets)>,
<Selection: 'resindex 1 to 56' from 2fslA_ca (55 atoms; active #0 of 20 coordsets)>,
<Selection: 'resindex 1 to 65' from lgjsA_ca (64 atoms; active #0 of 30 coordsets)>,
<Selection: 'resindex 1 to 65' from lgjtA_ca (64 atoms)>]

This then allows us to build a PDBEnsemble from them:

In [29]: ens = buildPDBEnsemble (proteins, mapping='CE")

In [30]: ens

Out [30]: <PDBEnsemble: Unknown (15 conformations; 60 atoms)>
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CHAPTER
FOUR

DATA COLLECTION WITH PDB IDS

The first step in signature dynamics analysis is to collect a set of related protein structures and build a PDBEnsemble.
This can be achieved by multiple routes: a query search of the PDB using blastPDB () or searchDali (),
extraction of PDB IDs from the Pfam or CATH database, or input of a pre-defined list.

We demonstrate the usage of SignDy with a pre-defined list of transporter proteins sharing the common LeuT fold
[YS13]. These proteins cycle through four typical states to transport a substrate molecule: outward-facing open (OFo),
outward-facing closed (OFc), inward-facing open (IFo), inward-facing closed (IFc), but only the first three states have
PDB structures available. If you know how to prepare an ensemble of structural homologs and wish to skip this part,
you can download the ensemble file used in /SZ/8] from here and proceed to the next tutorial.

First, make necessary imports from ProDy_ and Matplotlib_ packages if you haven’t already.

In [1]: from prody import =
In [2]: from pylab import =«

In [3]: dion ()

4.1 Prepare ensemble

For convinience and clarity, we define LeuT folds in separate lists taxonomically. For example, the PDB identifiers for
bacterial Leucine transporters are defined as follows:

In [4]: LeuTs = ['2A65', '20Q6H', '2072', '20B4', '20QEI', '20QJU', '3F3A', '3F3C',
: "3F3D', '3F3E', '3F48', '3F4I', '3F4J', '3GJC', '3GJD', '3GWU',
"3GWV', '3GWW', '3MPN', '3MPQ', '30S4', '30S5', '3QS6', '3TT1',
"3TUO0', '3USG', '3USI', '3USJ', '3USK', '3USL', '3UsSM', '3USO',
"3USP', '4FXZ', '4FY0', '4HMK', '4HOD', '4MM4', '4MM5', '4MM6',
"4MM7', '4MM8', '4MM9', '4MMA', '4MMB', '4MMC', '4MMD', '4MME',

"4MMF', '3TT3']

Despite the fact that bacterial Leucine transporters can form dimers, we will only take the chain A in each structure:

In [5]: LeuTs = [protID + 'A' for protID in LeuTs]

Note that in the above line, we use list comprehension'! to add a letter ‘A’ to each PDB identifier in the list to select
chain A. We define other LeuT folds similarily:

In [6]: DATs = ['4M48', '4XNU', '4XNX', '4XP1l', '4XP4', '4XP5', '4XP6',
: "4XP9C', '4XPA', '4XPB', '4XPF', '4XPG', '4XPH', '4XPT']

https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
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In [7]: DATs = [protID + 'A' for protID in DATs if protID is not '4XP9C']
In [8]: MhsTs = ['4US4A', '4US3A']

In [9]: vSGLTs = ['2XQ2A']

In [10]: Mhpls = ['2JLN', '2X79', '4DlA', '4D1B', '4D1C', '4D1D']

In [11]: Mhpls = [protID + 'A' for protID in Mhpls]

In [12]: BetPs = ['2WITA', '2WITB', '2WITC', '3PO3A', '3P03B', '3P03C',

"4AINA', '4AINB', '4AINC', '4C7RA', '4CTRB', '4C7RC',
'4DOJA', '4DOJB', '4DOJC', '4LLHA', '4LLHB', '4LLHC']

In [13]: AdiCs = ['3L1L', '3LRB', '3LRC', '3NCY', '30B6', '5J41', '5J4N']
In [14]: AdiCs = [protID + 'A' for protID in AdiCs]

In [15]: CaiTs = ['4M8JA', '2WSXA', '2WSXB', '2WSXC', '2WSWA', '3HFXA']

parsePDB () allows us to parse multiple structures all at once, and we can use it to load all the PDB structures into
ProDy_ in one line. We only need the alpha carbon for our purpose, so we set subset='ca’:

In [16]: pdb_ids = LeuTs + DATs + MhsTs + vSGLTs + Mhpls + BetPs + AdiCs + CaiTs
In [17]: ags = parsePDB (pdb_ids)

In [18]: len(ags)
Out[18]: 103

Any element in the list ags should be an AtomGroup instance. @We can conveniently feed this list to
buildPDBEnsemble () and letit build an PDBEnsemble for downstream analyses. We set mapping=ce to tell
the function to use a structure alignment algorithm, CEalign [IS98], for building the ensemble. We also set segid=0
and overlap=0 to make sure we apply no threshold of sequence identity or coverage/overlap to the building process.

In [19]: ens = buildPDBEnsemble (ags, mapping='ce', seqgid=0, overlap=0, title='LeuT', su

In [20]: ens
Out[20]: <PDBEnsemble: LeuT (103 conformations; 510 atoms)>

Finally we save the ensemble for later processing:

In [21]: saveEnsemble (ens, 'LeuT')
Out[21]: 'LeuT.ens.npz'

A more refined alignment procedure was adopted in the [SZ/8] paper. A representative structure is chosen from each
subtype of the proteins, e.g. LeuT, DAT, etc., and they are aligned to the LeuT representative using CEalign [IS98].
Then the rest are aligned to the representative structure of their own kind using the pairwise alignment algorithm
because they are sequentially the same despite small differences.
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CHAPTER
FIVE

CORE CALCULATIONS

In order to infer signature dynamics features we create mode ensembles from the PDB ensembles by calculating
normal modes for each member of the PDBEnsemble as in the previous page or [SZ18].

First, make necessary imports from ProDy and Matplotlib packages if you haven’t already.

In [1]: from prody import =
In [2]: from pylab import =«

In [3]: ion{()

5.1 Mode Ensemble

For this analysis we’ll use the PDBEnsemble object, which we just created, to build a ModeEnsemble. There
are options to select the model (GNM by default) and the way of considering non-aligned residues (default is
reduceModel (), which treats them as environment).

If necessary, we first load the ensemble:

In [4]: ens = loadEnsemble('LeuT.ens.npz')

Then we calculated first 20 GNM modes for each member of the ensemble:

In [5]: gnms = calcEnsembleENMs (ens, model=GNM, trim='reduce', n_modes=20, match=True)

In [6]: gnms
Out[6]: <ModeEnsemble: 103 modesets (20 modes, 510 atoms) >

In this way, we will obtain one ModeSet for each member and 85 in total. Finding a consistent order of modes
across different mode sets is critical to the accuracy of SignDy'? calculations. Therefore, in the above code, match
is set to True so that all other ModeSet ‘s are sorted to match the order of the reference
:class:.ModeSet‘, which is the first ModeSet in the ModeEnsemble by default.

5.2 Signature Dynamics
Signature dynamics are calculated as the mean and standard deviation of various properties such as mode shapes and
mean square fluctations.

For example, we can show the average and standard deviation of the shape of the first mode (second index 0). The first
index of the mode ensemble is over conformations.

2http://prody.csb.pitt.edu/test_prody/tutorials/signdy_tutorial/
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In [7]: showSignatureMode (gnms[:, 01);

Signature profile of mode 1

0.20

—0.15 A

5 105 207 307 407 507
Residues

In the plot, the curve shows the mean values, the darker shade shows the standard deviations, and the lighter shade
shows the range (minimum and maximum values). We can also show such things for properties involving multiple

modes such as the mean square fluctuations from the first 5 modes,

In [8]: showSignatureSgFlucts (gnms[:, :51);

Signature profile of 5 modes

0.8

0.6

0.4 1

0.2 1

0.0

T T
5 105 207 307 407 507
Residues

or the cross-correlations from the first 20.

In [9]: showSignatureCrossCorr (gnms[:, :20]);
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Cross-correlations (average), 20 modes 1,2,3...
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We can also look at distributions over values across different members of the ensemble such as inverse eigenvalue. We

can show a bar above this with individual members labelled like [JK15].

In [10]: highlights = {'2A65A': 'LeuT:O0F', '3TT3A': 'LeuT:IF'}

In [11]: from matplotlib.gridspec import GridSpec

In [12]: gs = GridSpec(ncols=1, nrows=2, height_ratios=[1, 10], hspace=0.15)

In [13]: subplot(gs[0]);

In [14]: showVarianceBar (gnms[:, :5], fraction=True, highlights=highlights);

In [15]: xlabel('");
In [16]: subplot(gs[1l]);
In [17]: showSignatureVariances(gnms[:, :5], fraction=True, bins=80,

In [18]: xlabel ('Mode weight');

alpha=0.7);

5.2. Signature Dynamics
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5.3 Saving the ModeEnsemble

Finally we save the mode ensemble for later processing:

In [19]: saveModeEnsemble (gnms, 'LeuT')
Out[19]: 'LeuT.modeens.npz'
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CHAPTER
SIX

CLASSIFICATION USING SEQUENCE, STRUCTURE AND DYNAMICS

DISTANCES

We can compare the dynamics of individual proteins using the spectral overlap, also known as covariance overlap.
The arccosine of this value provides a distance metric. Calculating this for all pairs in a mode ensemble gives us the
spectral distance matrix, which can be used to calculate a dynamics-based “phylogenetic” tree. This can be compared

against matrices and trees calculated using sequence and structure distances.

Again here are the imports if you need them.

In [1]: from prody import =«
In [2]: from pylab import =«
In [3]: ion{()

6.1 Load PDBEnsemble and ModeEnsemble

We first load the PDBEnsemble:

’In [4]: ens = loadEnsemble('LeuT.ens.npz')

Then we load the ModeEnsemble:

’In [5]1: gnms = loadModeEnsemble ('LeuT.modeens.npz")

6.2 Spectral overlap and distance

We calculate a distance matrix based on spectral overlaps (calculated as their arccosines), calculate a tree from it and

reorder the matrix using the tree as follows:

In [6]: sd_matrix = calcEnsembleSpectralOverlaps(gnms([:,:1], distance=True)
In [7]: labels = gnms.getLabels ()
In [8]: so_tree = calcTree (names=labels,
distance_matrix=sd_matrix,
method="upgma')
In [9]: reordered_sd, new_sd_indices reorderMatrix (names=labels,

matrix=sd_matrix,
tree=so_tree)
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We can show the original and reordered spectral distance matrices and the tree as follows. showTree () has multiple
format options. Here we show the output of using plt. This layout allows us to directly compare against the output
from showMatrix () using the option origin="upper’.

In [10]: showMatrix(sd_matrix, origin='upper');
In [11]: showTree(so_tree, format='plt');

In [12]: showMatrix (reordered_sd, origin='upper');

20

60

80

100

distance
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6.3 Sequence and structural distances

The sequence distance is given by the Hamming distance, which is calculated by subtracting the percentage identity
(fraction) from 1, and the structural distance is the RMSD. We can also calculate and show the matrices and trees for
these from the PDB ensemble.

In [13]: seqgid_matrix = buildSeqgidMatrix (ens.getMSA())
In [14]: seqd_matrix = 1. - segid_matrix
In [15]: showMatrix(seqgd_matrix, origin='upper');

In [16]: seqgd_tree = calcTree (names=labels,
e distance_matrix=seqgd_matrix,
et method="upgma')

In [17]: showTree(seqd_tree, format='plt');

In [18]: reordered_seqd, indices

reorderMatrix (labels, seqgd_matrix, seqd_tree)

In [19]: showMatrix (reordered_seqd, origin='upper');

6.3. Sequence and structural distances 27
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In [20]: rmsd_matrix = ens.getRMSDs (pairwise=True)
In [21]: showMatrix(rmsd_matrix, origin='upper');
In [22]: rmsd_tree = calcTree (names=labels,

e distance_matrix=rmsd_matrix,
e method="upgma')

In [23]: showTree(rmsd_tree, format='plt');
In [24]: reordered_rmsd, indices = reorderMatrix (labels, rmsd_matrix, rmsd_tree)

In [25]: showMatrix(reordered_rmsd, origin='upper');

0 20 40 60 80 100
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6.4 Comparing sequence, structural and dynamic classifications

We can reorder the seqd and sod matrices by the RMSD tree too to compare them:

In [26]: reordered_seqd, indices = reorderMatrix (names=labels, matrix=seqd_matrix, treesq

In [27]: reordered_sd, indices = reorderMatrix (names=labels, matrix=sd_matrix, tree=rmsd

rrmsd_tree)

_tree)

In [28]: showMatrix(reordered_seqd, origin='upper')
Out [28]:
(<matplotlib.image.AxesImage at 0x7fl1ddf5a7e90>,

(1,
<matplotlib.colorbar.Colorbar at 0x7f£1ddf48d410>)

In [29]: showMatrix (reordered_rmsd, origin='upper')
Out [29]:
(<matplotlib.image.AxesImage at 0x7£1dd84b3950>,
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(1,
<matplotlib.colorbar.Colorbar at 0x7f1dd7e85810>)

In [30]: showMatrix(reordered_sd, origin='upper')
Out[30]:
(<matplotlib.image.AxesImage at 0x7£1dd8493250>,

(1,
<matplotlib.colorbar.Colorbar at 0x7f1dd7e159d0>)
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6.4. Comparing sequence, structural and dynamic classifications
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This analysis is quite sensitive to how many modes are used. As the number of modes approaches the full number,
the dynamic distance order approaches the RMSD order. With smaller numbers, we see finer distinctions. This is
particularly clear in the current case where we used just one mode.
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