Day 2 – Lecture 2

Summary

1. Theory

- a. Gaussian Network Model (GNM)
- b. Anisotropic Network Model (ANM)
- c. Resources/Servers/Databases (ProDy, DynOmics)

2. Bridging Sequence, Structure and Function

- a. Ensemble analysis and functional modes of motion
- b. Combining sequence and structure analyses signature dynamics
- c. Modeling membrane proteins and lipid environment with ANM

3. Allostery and druggability

- a. Essential site scanning and allosteric pocket prediction
- b. Druggability simulations

Allosteric regulation and drug design

- green: catalytically active state
- others: inactive states
- blue star: allosteric inhibitor
- orange triangle: substrate

- A portion of Free-energy landscape around the native state sampled by the protein
- ➤ Protein samples multiple preexisting conformational states
- ➤ Global minimum shifts to favor inactive conformation when an inhibitor binds to an allosteric site.
- Current approach in structurebased drug-design

Essential Site Scanning Analysis

Crowding near each residue

 C^{α} , other heavy atoms (treated as environment in reduced model technique[†])

$$\Delta \lambda_k^{(i)}(\%) = \frac{\left(\lambda_k^{(i)} - \lambda_k\right)}{\lambda_k} \times 100.$$

k : mode index

i: residue index

ESSA profile

$$z_i = \frac{\langle \Delta \lambda_{1-10}^{(i)} \rangle - \mu}{\sigma}$$

 μ : mean

 σ : *std*

Ligand binding sites of are chosen those whose at least one atom within 4.5 A of a ligand.

Glutamate racemase (PDB id: 2jfn)

ESSA-based allosteric pocket prediction

Allosteric sites have relatively higher local hydrophobic density (LHD)

• Song et al. J Chem Inf Model 57 (9) (2017) 2358.

‡ Le Guilloux et al. *BMC Bioinformatics* 10 (1) (2009) 168.

evaluation

by Fpocket[‡]

Lysine acetyltransferase (4avb)

Hexokinase I (Icza)

Multiple ligand-binding sides on GPCRs

Muscarinic acetylcholine receptor (4mqt) in A and D

GPR40 (5tzy) in B and C

Muscarinic acetylcholine receptor M2 (Class A, PDB id: 4mqt)

Intrahelical sites

Purple: agonist IXO (ortho site), Red: PAM 2CU (ligand entry site)

Free fatty acid receptor GPR40 Class A (PDB: 5tzy)

Lipid facing sites

Magenta: agonist MK6 Orange: agoPAM 70S

Cryptic sites by ClustENMD and ESSA

Kaynak, Bahar, Doruker, (2020) "Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions" Comput. Struct. Biotechnol.

- Efficient methodology to identify essential sites affecting global dynamics either in response to possible ligand binding or due to participating in global hinge regions.
- Allosteric pocket prediction technique outperforming two widely used ENM-based algorithms, PARS and AllositePro.
- Detection of cryptic sites when combined with ClustENMD
- Identification of multiple ligand-binding sites in homologous structures, e.g. for GPCRs
- Possible application at the proteome level due to efficiency

Druggability

Druggable Genome

A small subset of are 'disease-modifying' – and not all of them are druggable

Druggable genome 3,000 genes

430+ kinases 600+ GPCRs 70+ kinases 100+ GPCRs Drug Targets 600-1,500

Disease-related genes ~3,000 genes

- Only 2% of human proteins interact with currently approved drugs.
- 10-15% of human proteins are disease-modifying
- 10-15% are druggable
- 5% are both disease-modifying and druggable

Rational Design of Inhibitors

3D structure of the target is used for

- Molecular insight on function and allostery
- Molecular docking of small molecules/fragments
- Pharmacophore modeling
- Virtual screening

Druggable or not?

Lfa1 - a leukocyte glycoprotein that promotes intercellular adhesion and binds intercellular adhesion molecule 1

Active site druggability:

➢ Best known K_d

18.3 nM

Simulation

0.03-0.5 nM

Some proteins do not present well-defined pockets

A problem:

Hard to discriminate between different binding compounds/poses for a given target if the surface does not present suitable pockets

"Structurally Unique Inhibitors of Human Mitogen-activated Protein Kinase Phosphatase-1 Identified in a Pyrrole Carboxamide Library."Lazo et al (2007) J Pharmacol Exp Ther.

Druggability from Experiments

- X-ray crystallography
- protein structure is solved in presence of small organic molecules

Mattos and Ridge, Nat Biotechnology, 1996

NMR screening

 compounds from a fragment-library are screened as mixtures of 20-30 compounds, druggability is calculated from chemical shift perturbations

Hajduk et al., J Med Chem, 2005

Druggability Simulations

Annealing, Equilibration, Simulation

Initial system configuration

Probe binding free energy map, calculated for each voxel using Eq. 1, n_i (B) and n_o (C)

MD simulation and data collection (8K to 10K frames)

Probe interaction spots colored by binding free energy

Reference simulation for calculating enrichment

A solution obtained from seven spots (affinity 0.3 nM and volume 451 Å³)

Isopropanol Binding Spots

 ΔG grid is mapped onto the protein structure

9/4/2009 24

I. Grid element with lowest ΔG value is selected

2. Other elements within **4** Å are removed (elements inside the red sphere ->)

3. I and 2 are repeated until no more points are left to remove

9/4/2009 25

MDM2: p53 binding site

p53 peptide key interactions (X-ray)

Highest affinity solution (7 points)

Numbers indicate the order that hot spots were merged by the growing algorithm

Predicted K_d range : **0.3-2.0** nM

Experimental K_d : **0.6 nM**

(most potent inhibitor by Yu et al, 2009)

Proteins may have multiple target sites

eg5 Druggable Sites

Conformational flexibility-eg5

Discovery of inhibitors of cytochrome c peroxidase activity

druggability simulations for designing a pharmacophore model

Druggability Simulations

Heme site is the only druggable site with nanomolar achievable affinity

Snapshots from simulations were used to develop a pharmacophore model

Pharmacophore Model

Virtual HTS for hit identification

A pharmacophore model describes features common to a set of compounds active against a target protein

The **virtual HTS pipeline** will allow for identifying *more potent* compounds with similar shapes but diverse chemistry providing us with more choices for chemical synthesis and rational design

Test virtual hits experimentally and use results to refine the model

In silico screening

Test ~10-20 compounds

Example in silico hit

Discovery of inhibitors of cytochrome c peroxidase activity

Cyt c inhibitor discovery and drug repurposing

- A. A snapshot from cyt c druggability simulations
- **B.** Pharmacophore model that was built based on tightly bound molecules observed in druggability simulations.
- C. This model was used for virtual screening of 6,000 approved and experimental drugs; 72 repurposable drugs were identified, of which 12 have been tested, and 3 turned out to inhibit *cyt* c peroxidase activity, shown in panel **C**.

Additionally, I4 M purchasable drug- and lead-like compounds from the ZINC database were screened, I9 compounds were identified, I4 of which tested, and 4 turned out to be novel inhibitors of cyt c.

7 novel inhibitors of peroxidase activity of cyt c

Discovery of inhibitors of cytochrome c peroxidase activity

Exp validation

Peroxidase reaction probed by fluorescence of oxidation product, for cyt c incubated with CL/DOPC liposomes

Druggability- Purpose

- Assessment of druggable sites
- Identification of allosteric sites that can bind drugs
- Estimation of binding affinity

Druggability- Method

- Pre-processing: Define a probe set (customizable)
- Prepare input files for NAMD runs with probe molecules
- Post-processing: Analyze trajectories to make inferences on binding sites and affinities, and to build pharmacophore models

Virtual screening

- Screen pharmacophore model, against libraries of small compounds
- Provide initial hypotheses to be validated by experiments
- Hits confirmed by experiments can be evaluated by atomic simulations (including free energy perturbation methods)

Pharmmaker tool in ProDy

DruGUI

Target protein Selection of probes Druggability simulations 1. Druggable sites

Pharmmaker

4. Statistical analysis of dominant interaction pairs of residue and probe type snapshotStatistics Number residue-probe S108(B)-isobutane P105(B)-acetamide 0.3294 S217(A)-isobutane 0.3264 N242(B)-acetamide K218(A)-isobutane 0.2891 L239(B)-acetamide 0.2744 K104(B)-acetamide 0.2418 G219(A)-acetamide N242(A)-isopropanol 0.1886 0.1769 P105(A)-isopropanol Total of 4,846 snapshots K218(A)-acetamide 0.1522 5. Find snapshots with these interactions to build PM snapshotSelection

Pharmit

Sunseri and Koes, NAR, 2016

Combining ESSA and druggability

