Day 1 – Lecture 2

Ivet Bahar and Pemra Doruker

Department of Computational and Systems Biology
School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260

Theory

- a. Gaussian Network Model (GNM)
- b. Anisotropic Network Model (ANM)
- c. Resources/Servers/Databases (ProDy, DynOmics)

2. Bridging Sequence, Structure and Function

- a. Ensemble analysis and functional modes of motion
- b. Combining sequence and structure analyses signature dynamics
- c. Modeling membrane proteins and lipid environment with ANM

3. Allostery and druggability

- a. Essential site scanning and allosteric pocket prediction
- b. Druggability simulations

Proteins exploit pre-existing soft modes for their interactions

Structural changes involved in protein binding correlate with intrinsic motions in the unbound state

maltodextrin binding protein Unbound/Bound

Allosteric changes in conformation

Elastic Network Models are particularly useful for exploring the cooperative motions of large multimeric structures

HIV Reverse Transcriptase (RT)

Red: most mobile

Blue: most constrained

Comparison with experimental data shows that the functional movements are those predicted by the ANM to be intrinsically encoded by the structure

Allosteric changes in conformation

Elastic Network Models are particularly useful for exploring the cooperative motions of large multimeric structures

Comparison with experimental data shows that the functional movements are those predicted by the ANM to be intrinsically encoded by the structure

Induced Dynamics or Intrinsic Dynamics?

Experiments

Theory

http://www.youtube.com/watch?v=IOUzdzm68YY

References:

Substates may be identified along soft modes

Bacterial chaperonin GroEL: an allosteric machine

GroEL Allosteric Dynamics

Passage between the R and T states

ANM yields a series of 3N dimensional deformation vectors

Mode I (slowest mode)

Mode 2

Mode 3

. . . .

Mode 3N-6 (fastest mode)

Given by ANM eigenvectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, $\mathbf{v_{3N-6}}$, with respective frequencies proportional to κ_1 , κ_2 , κ_3 , κ_{3N-6}

Experiments

 $\mathbf{d} = [\Delta \mathbf{x}_1 \ \Delta \mathbf{y}_1 \ \Delta \mathbf{z}_1 \dots \ \Delta \mathbf{z}_N]^\mathsf{T}$

What is the overlap between computations and experiments?

Correlation cosine between \mathbf{v}_k and \mathbf{d}

$$CO(m) = \left(\sum_{k=1}^{m} (\boldsymbol{v}_k \cdot \frac{\boldsymbol{d}}{|\boldsymbol{d}|})^2\right)^{1/2}$$

Mutations may stabilize conformers along soft modes– which may be impair function

WT

E461 mutant is a deformed structure along mode 1

E461K

E461K

E461K mutation causes disruption of inter-ring transfer of ATP-induced signal (Sewell et al NSB 2004)

Experimentally observed structural changes are usually reconfigurations along soft modes

- Correlation cosine of 0.75 ±
 0.15 between one of the softest modes and the experimentally observed change in structure
- Significant decrease in RMSD between the endpoints upon moving along a single soft mode (out of 3N-6 modes)

Consider more than 2 end points for a given structure, but all the known structures for a given protein, or the structurally resolved

Ensemble of structures

Bakan A, Bahar I (2009) The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. *Proc Natl Acad Sci USA* 106: 14349-14354.

Dynamics inferred from known structures

Comparison of static structures available in the PDB for the same protein in different form has been widely used is an indirect method of inferring dynamics.

Different structures resolved for HIV-1 reverse transcriptase (RT)

Recognition Dynamics Up to Microseconds Revealed from an RDC-Derived Ubiquitin Ensemble in Solution

Oliver F. Lange, ..., Jens Meiler, Helmut Grubmüller, Christian Griesinger, Bert L. de Groot

The ensemble covers the complete structural heterogeneity observed in 46 ubiquitin crystal structures, mostly complexes with other proteins.

- Conformational selection, rather than induced-fit explains the molecular recognition dynamics of ubiquitin.
- A concerted mode accounts for molecular recognition heterogeneity

Reference

- Structural changes accompanying substrate (protein) binding
- Structural changes induced by, or stabilized upon, ligand binding

Ubiquitin
140 structures
1732 models

- Structural changes accompanying substrate (protein) binding
- Structural changes induced by, or stabilized upon, ligand binding

Ubiquitin
140 structures
1732 models

- Structural changes accompanying substrate (protein) binding
- Structural changes induced by, or stabilized upon, ligand binding
- Alternative conformations sampled during allosteric cycles

Yang et al. PLoS Comp Biol 2009

- Structural changes accompanying substrate (protein) binding
- Structural changes induced by, or stabilized upon, ligand binding
- Alternative conformations sampled during allosteric cycles

Yang et al. PLoS Comp Biol 2009

What is Ensemble Analysis?

Principal component analysis

Input:

An ensemble of structures for a given protein

- NMR models (~40)
- X-ray structures resolved under different conditions (ligand-bound/unbound, different stages of molecular machinery or transport cycle
- MD snapshots/frames

Output:

Principal modes of conformational changes

- variations/differences between NMR models
- rearrangements/changes under different functional states
- dynamics/fluctuations observed in simulations

What is Ensemble Analysis?

ANM analysis

 Select a representative structure (e.g. with minimal RMSD from others)

Theoretical

 Decompose either H or C into a series of modes (3N-6 eigenvectors)

Principal component analysis

PCA

 Superimpose/align the structures

Experimental

 Decompose it into a series of modes of covariance (3N-6 eigenvectors)

Global motions inferred from theory and experiments

- → PCA of the ensemble of resolved structures
- → ANM analysis of a single structure from the ensemble

Global motions inferred from theory and experiments

The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding

Ahmet Bakan and Ivet Bahar

Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15213

Reference:

Bakan & Bahar (2009) PNAS 106, 14349-54

$<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_1>$	$<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_2>$	•••	•••	$<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_N>$
$\langle \Delta \mathbf{R}_2. \Delta \mathbf{R}_1 \rangle$	$\langle \Delta \mathbf{R}_2. \Delta \mathbf{R}_2 \rangle$			
•••				
•••				
$<\!\!\Delta \mathbf{R}_{\mathrm{N}}$. $\Delta \mathbf{R}_{\mathrm{1}}\!\!>$				$<\Delta \mathbf{R}_{\mathrm{N}}$. $\Delta \mathbf{R}_{\mathrm{N}}>$

 $= \Delta \mathbf{R} \Delta \mathbf{R}^{\mathsf{T}}$

 $\Delta \mathbf{R} = \mathbf{N}$ -dim vector of instantaneous fluctuations $\Delta \mathbf{R}_i$ for all residues $(1 \le i \le N)$

 $<\Delta \mathbf{R}_1$. $\Delta \mathbf{R}_1>$ = ms fluctuation of site 1 averaged over all m snapshots.

Covariance matrix (3Nx3N)

3N x 3N

Principal Component Analysis (PCA)

$$\mathbf{C}^{(ij)} = \begin{bmatrix} \left\langle \Delta x_i \Delta x_j \right\rangle & \left\langle \Delta x_i \Delta y_j \right\rangle & \left\langle \Delta x_i \Delta z_j \right\rangle \\ \left\langle \Delta y_i \Delta x_j \right\rangle & \left\langle \Delta y_i \Delta y_j \right\rangle & \left\langle \Delta y_i \Delta z_j \right\rangle \\ \left\langle \Delta z_i \Delta x_j \right\rangle & \left\langle \Delta z_i \Delta y_j \right\rangle & \left\langle \Delta z_i \Delta z_j \right\rangle \end{bmatrix} \longrightarrow \mathbf{C} = \mathbf{PSP}^T = \sum_{i=1}^{3N} \boldsymbol{\sigma}_i \ \boldsymbol{p}^i \boldsymbol{p}^{iT}$$

$$\mathbf{C} = \mathbf{PSP}^T = \sum_{i=1}^{3N} \sigma_i \ \mathbf{p}^i \mathbf{p}^{iT}$$

Soft modes enable functional movements

Theory

http://www.youtube.com/watch?v=IOUzdzm68YY

References:

Experimental structures (for a given protein) are mainly variants along soft modes

ProDy for exploring conformational space Protein Dynamics Analysis in Python

ProDy-ANM sampling of conformational space is more complete than that of MD

Source http://www.google.com/analytics/

-10 -5 0 5 10 15 20 25 PCA mode 2

modes for docking simulations

ProDy: An Interactive Tool

Suite of tools

Elastic Network Model
(ANM/GNM) Analysis
Principal component analysis of
experimentally resolved structures

Multiple Sequence Alignment Sequence conservation Correlated Mutations

Computational Drug Discovery Binding Site Prediction Affinity Estimation

A VMD plugin Visualization of collective motions Animations/movies

Suite of tools

Modeling coupled protein-lipid dynamics
Useful for membrane proteins

Propagation allosteric signals Effector and sensor residues

Residues that can alter protein's essential dynamics upon binding Prediction of allosteric pockets

Shared global ENM mode profiles and departures from them, dynamics-based trees

Suite of tools

Unbiased conformational sampling of flexible and large biomolecular systems at atomic resolution and with high efficiency

ENM guided MD simulations Efficient sampling of energy landscape and transitions

dynamics of protein complexes resolved by cryo-EM

Tutorials: ProDy & Structure Analysis

- Retrieving PDB Files
- BLAST-Searching the PDB
- Constructing Biomolecular Assemblies
- Determining functional motions
- Aligning and Comparing Structures
- Identifying Intermolecular Contacts

- Simplicity
- Visualizing the global dynamics
- Applicability to large systems
- Assessing cooperative motions
- Efficiency immediate results
- Relevance to observables, to functional mechanisms & allostery

- Low resolution approach
- No specific interactions
- Lack of atomic details
- Linear theory applicable near an energy minimum
- not a tool for structure prediction (could be used for refinement)

The trajectory was generated with adaptive-ANM (aANM) using the first 30 modes Initial: N-shaped (PDB id: 4uqj) -> Target: O-shaped (PDB id: 5ide) AMPAR

Hybrid methods to overcome caveats ANM-guided atomistic simulations

ANM-guided transition pathways

- Isin B, Schulten K, Tajkhorshid E, Bahar I (2008) Biophysical J 95: 789-803.
- Yang Z, Májek P, Bahar I (2009) PLoS Comput Biol 5: e1000360.
- Gur M, Madura JD, Bahar I (2013)
 Biophys J 105:1643-52
- Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B (2014) PLoS Comput Biol 10: e1003521

coMD trajectories proceed along the minima of free energy landscape

Energy landscape from Beckstein et al, JMB, 2009

ClustENM for conformational sampling of flexible proteins and supramolecules

Trigger factor (TF)- ribosome (50S) ClustENM conformers aligned to the cryo-EM map.
Conformers of 70S showing translocation of tRNA.

- Original method: Kurkcuoglu, Z.; Bahar,
 I.; Doruker, P., ClustENM: ENM-Based
 Sampling of Essential Conformational
 Space at Full Atomic Resolution. J Chem
 Theory Comput (2016) 12: 4549-62
- Ensemble docking to flexible proteins: Kurkcuoglu, Z.; Doruker, P., PLoS One (2016) 11, e0158063.
- Trigger factor- ribosome dynamics: Can, M.T.; Kurkcuoglu, Z.; Ezeroglu, G.; Uyar, A.; Kurkcuoglu, O.; Doruker, P., PLoS One (2017) 12, e0176262.
- Protein-protein/DNA docking with HADDOCK: Kurkcuoglu, Z.; Bonvin, A., Proteins (2020) 88: 292-306

ClustENMD implementation in ProDy

HIV-I reverse transcriptase

Red dots: ClustENMD conformers Black dots: experimental structures

ClustENMD for HIV-I protease

