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ProDy References
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Bakan A,* Dutta A,*  Mao W,  Liu Y,  Chennubhotla C,  Lezon TR, Bahar I 

(2014) Evol and ProDy for Bridging Protein Sequence Evolution and 

Structural Dynamics Bioinformatics 30: 2681-3

Bakan A, Meireles LM, Bahar I (2011) ProDy: Protein dynamics inferred from 

theory and experiments Bioinformatics 27: 1575-1577.

Zhang S, Krieger JM, Zhang Y, Kaya C, Kaynak B, Mikulska-Ruminska K, 

Doruker P, Li H, Bahar I. (2021) ProDy 2.0: Increased Scale and Scope after 

10 Years of Protein Dynamics Modelling with Python. Bioinformatics

Apr 5:btab187.

http://bioinformatics.oxfordjournals.org/content/30/18/2681.long
http://www.ccbb.pitt.edu/Faculty/bahar/publications/199.pdf
https://pubmed.ncbi.nlm.nih.gov/33822884/


ProDy: Usage and dissemination statistics

Date Releases Downloads1 Visits2 Unique3 Pageviews2 Countries5

Nov’10 - Oct’11 19 8,530 8,678 2,946 32,412 45

Nov’11 - Oct’12 6+9* 35,108 16,472 6,414 71,414 59

Nov’12 - Oct’13 8* 87,909 19,888 8,145 86,204 66

Nov’13 - Oct’14 5* 140,101 24,134 11,170 112,393 69

Nov’14 - May’15 1* 68,230 15,941 8,479 66,641 50

June ’15- June‘16 5* 124,613 32,491 15,402 140,818 132

June’16- June 17 31,374 16,201 129,900 136

Total (6/17) 53+ 464,491+ 148,978 68,757 639,782 136

1 Download statistics retrieved from PyPI (https://pypi.python.org/pypi/vanity).
2 Google Analytics (www.google.com/analytics) was used to track:
3 Unique indicates number of unique visitors; 

Total (5/18) 979,356 182,415 86,063 784,430

Total (5/19) 1,670,461 218,811 106,130

Total (10/20) 2,161939 280,862 140,905

55,263 lines of code

https://pypi.python.org/pypi/vanity
http://www.google.com/analytics
https://www.openhub.net/p/ProDy/analyses/latest/languages_summary


Usage pattern
Google Analytics

June 1, 2016 – June 1, 2017



Oct 2020



Tutorials

http://prody.csb.pitt.edu/tutorials/

ProDy NMWiz

Evol

Druggability



Workshop files on ProDy website
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Representation of structure as a network

Why network models?

for large systems’ collective 

motions & long time processes beyond 

the capability of full atomic simulations

to incorporate structural data in 

the models – at multiple levels of 

resolution

to take advantage of theories 

developed in other disciplines:  

polymer physics, graph theory, spectral 

graph methods, etc.http://www.lactamme.polytechnique.fr/



Proteins are not static: 

They move, breath, work, dance, interact with each other 

Local motions



Proteins are not static: 

They move, breath, work, dance, interact with each other 

Global motions



Many proteins are molecular machines

STMV dynamics (Zheng Yang)

And mechanical properties become more important in complexes/assemblies



Each structure encodes a unique dynamics
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Structure              Dynamics              Function  

Signaling dynamics of AMPARs and NMDARs

domain/subunit motions

Concerted movements of signaling molecules

Dutta A, Krieger J, Lee JY, Garcia-Nafria J, Greger IH, Bahar I (2015) Cooperative Dynamics of Intact AMPA and NMDA 

Glutamate Receptors: Similarities and Subfamily-Specific DifferencesStructure 23: 1692-170

http://www.sciencedirect.com/science/article/pii/S0969212615002828


Each structure encodes a unique dynamics
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Modeling the machinery of cryo-EM 
structures

a1

a2

a4
a
5

a6

a
8

a1

a2

a4
a5a6

a7

a8 a1

a2

a4
a5

a6

a7

a8

Collective modes of the mammalian chaperonin TRiC/CCT reveals a state-
dependent sequence of asymmetric movements

a7

Zhang Y, Krieger JM, Mikulska-Ruminska K, Kaynak B, Sorzano COS, Carazo JM, Xing J, Bahar 
I (2020) State-dependent sequential allostery exhibited by chaperonin TRiC/CCT revealed by network 
analysis of Cryo-EM maps. Prog Biophys Mol Biol S0079-6107(20)30082-1

Yan Zhang   

https://pubmed.ncbi.nlm.nih.gov/32866476/


Summary
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1. Theory
a. Gaussian Network Model (GNM)
b. Anisotropic Network Model (ANM)
c. Resources/Servers/Databases (ProDy, DynOmics)

2. Bridging Sequence, Structure and Function
a. Ensemble analysis and functional modes of motion
b. Combining sequence and structure analyses – signature dynamics
c. Modeling membrane proteins and lipid environment with ANM

3. Allostery and druggability
a. Essential site scanning and allosteric pocket prediction
b. Druggability simulations



Two elastic network models:
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Gaussian Network Model (GNM)
o Li H, Chang YY, Yang LW, Bahar I (2016) iGNM 2.0: the Gaussian network 

model database for bimolecular structural dynamics Nucleic Acids Res 44: D415-
422

o Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in 
protein Folding & Design 2: 173-181.

Anisotropic Network Model (ANM)

o Eyal E, Lum G, Bahar I (2015) The Anisotropic Network Model web server at 
2015 (ANM 2.0) Bioinformatics 31: 1487-9

o Atilgan AR, Durrell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I 
(2001) Anisotropy of fluctuation dynamics of proteins with an elastic network 
model Biophys J 80: 505-515.

http://www.ncbi.nlm.nih.gov/pubmed/26582920?dopt=Abstract
http://www.ccbb.pitt.edu/Faculty/bahar/publications/99.pdf
http://bioinformatics.oxfordjournals.org/content/early/2015/01/19/bioinformatics.btu847.long
http://www.ccbb.pitt.edu/Faculty/bahar/publications/143.pdf


Physics-based approach

Statistical Mechanics of Polymers

Theory of Rubber Elasticity

Paul J. Flory (1910-1985)

Nobel Prize in Chemistry 1974
Elastic Network Model for Proteins

And Pearson (1976),  Eichinger (1980), Klockzkowski, Erman & Mark (1989)…



Collective motions

i

j
Rij

Eigenvalue decomposition of 

Kirchhoff/Hessian matrix 

mode 1 mode 2 

A B 

1 4 

3 2 

1 4 

3 2 

Bahar, Lezon, Yang & Eyal (2010) Global Dynamics of Proteins: Bridging Between Structure  and Function Annu Rev Biophys 39: 23-42

GNM: Bahar et al Fold & Des 1996; Haliloglu et al. Phys Rev Lett1997 

ANM: Doruker et al. Proteins 2000;  Atilgan et al, Biophys J 2001

file:///C:/Users/bahar/Desktop/Seminars/1ake_network.mov


Elastic network

Basic approach: 
Mapping the structure to a network, the beads of which are the 
residues, and springs connect nearest spatial neighbors
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Each node represents a residue

Residue positions, Ri, identified by 
a-carbons’ coordinates

Springs connect residues located 
within a cutoff distance (e.g., 10 Å) 

→ Nodes are subject to Gaussian 
fluctuations DRi

→ Inter-residue distances Rij also 
undergo Gaussian fluctuations

→ DRij = DRj - DRi

Bahar, Atilgan & Erman, Fold & Des 1997

Gaussian Network Model (GNM)

Fluctuations in residue positions

Rk k
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Fluctuation vector:

→DR =

Bahar, Atilgan & Erman, Fold & Des 1997

Fluctuations in residue positions

DR1

DR2

DR3

DR4

..

..

..

..

DRN

Gaussian Network Model (GNM)

Rk k
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Instantaneous deviation for atom i

DRi(tk) = Ri(tk) - Ri(0)

Fluctuation
with respect to starting structure R(0)

Under equilibrium conditions:

Average displacement from equilibrium: < DRi(tk)> = 0

But the mean-square fluctuation (MSF), < (DRi(tk))
2> ≠ 0



Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)
2  + (DR23)

2  + ........ (DRN-1,N)2 ]

DR12 = R12- R12
0

Classical bead-and-spring model
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Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)
2  + (DR23)
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Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)
2  + (DR23)

2  + ........ (DRN-1,N)2 ]

   =  
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-1
 1  

= (g/2) [ (DR2 – DR1)
2  + (DR3 – DR2)

2   + ........  

[DR1    DR2   DR3  ….   DRN](g/2)
=

Fluctuation vector

DR1

DR2

DR3

DRNVtot= (g/2) DRT  DR
Force constant
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Kirchhoff matrix for inter-residue contacts

 =

 provides a complete description of contact topology!

1 N

N

1

For a protein of N residues

-1 if rik < rcut

0 if rik > rcut
ik=

ii = - Sk ik

VGNM = (g/2) DRT  DR



An alternative definition of spring 
constant: distance dependent g

32
See also: Riccardi D, Cui Q, Phillips G-N. Application of elastic network models to proteins in the 
crystalline state. Biophys J. 2009;96:464–475.

Hinsen et al Harmonicity in slow protein 
dynamics. Chem Phys. 2000; 261:25–37.HCA model

where the unit for k(R) is kcal mol−1 Å−2
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Statistical mechanical averages

 provides a complete description of equilibrium fluctuations!

  DDD=DD
−

 
TkV

j  iNj  i deZ B RRRRR  . .  )()/1(
/

 ijB Tk 1)/3( −= g

< 𝑓 𝑥 > = 𝑓׬ 𝑥 𝑝 𝑥 𝑑𝑥 = 
׬ 𝑓 𝑥 𝑤 𝑥 𝑑𝑥

׬ 𝑤 𝑥 𝑑𝑥
= ׬ 𝑓 𝑥 𝑤 𝑥 𝑑𝑥

𝑍

Suppose f = cross-correlation between residue fluctuations = < (DRi . DRj >

And x represents the conformational changes (multiple modes of motion)



[-1]ii ~ <(DRi)
2>

Kirchhoff/connectivity matrix fully defines

the cross-correlations between residue motions

[-1]ij ~ <(DRi .DRj)>

and  the mean-square fluctuations of residues

weizmann-lecture.ppt
weizmann-lecture.ppt


Comparison with B factors
 X-ray crystallographic structures deposited in the 

PDB also report the B-factors (Debye-Waller factors) 
for each atom, in addition to atomic coordinates

 B-factors scale with mean-square fluctuations 
(MSFs), i.e. for atom i, 

Bi = [8p2/3] <(DRi)
2> 
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How do residue MSFs compare with the B-factors? 



Output from DynOmics

36

Example: 1vaa
PDB title: CRYSTAL STRUCTURES OF 
TWO VIRAL PEPTIDES IN COMPLEX 
WITH MURINE MHC CLASS I H-2KB

1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol
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Output from DynOmics

1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


 
 

B-factors are affected by crystal contacts

Two X-ray structures for a designed sugar-binding protein LKAMG



  
 

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

Particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments 

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

FOR MORE INFO...

B-factors are affected by crystal contacts



 

Agreement between theory and experiments upon 

inclusion of crystal lattice effects into the GNM

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

FOR MORE INFO...

Particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments 

Crystal contacts

theory



Application to hemoglobin

0

10

20

30

40

50

0 50 100 150 200 250 300

a -subunit

theoretical B-factor

experimental B-factor

residue number

 -subunit

B- factors – Comparison with experiments 

C. Xu, D. Tobi and I. Bahar (2003) J. Mol.  Biol. 2003, 153-168 

 

 

 

Intradimer cooperativity – Symmetry rule (Yuan 

et al. JMB 2002;  Ackers et  al. PNAS 2002.)



Cross-correlations
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- Provide information on the relative movements of pairs of 

residues

- Purely orientational correlations (correlation cosines) are 

obtained by normalizing cross-correlations as

<(DRi .DRj)>  

[<(DRi)
2> <(DRj)

2>]1/2
-1 ≤ ≤ 1

Fully 

anticorrelated

Fully 

correlated



Output from iGNM
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1cot

Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422



Output from DynOmics - ENM
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1vaa

Li, Chang, Lee, Bahar & Yang (2017) Nucleic Acids Res 45:W374 - W380

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Cross-Correlations
are elements of the

Covariance Matrix C

45

-1 ~ C
Covariance scales with the 

inverse of the Kirchhoff 

matrix. 

The proportionality 

constant is 3kT/g



Covariance matrix (NxN)

DR1 . DR1> DR1 . DR2> ... ... DR1 . DRN>

DR2. DR1> DR2. DR2>

...

...

DRN . DR1> DRN. DRN>

C =

DR = N-dim vector of instantaneous fluctuations DRi for all residues (1 ≤ i ≤ N) 

< DRi . DRi> = ms fluctuation of site i averaged over time (or all m snapshots).

= DR DRT



Normal Modes

Collective Motions 
Encoded by the Structure



Eigenvalue decomposition of 
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 = U L UT

l0

l1

l2

l3

lN−1

where L is the diagonal matrix of eigenvalues

L = 

l0 = 0
(zero eigenvalue)

l1  l2  ....  lN−1



Eigenvalue decomposition of 
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 = U L UT

u11

u12

u13

u1N

and U is the matrix of eigenvectors

U = 

u21

u22

u23

u2N

uN1

uN2

uN3

uNN

u0 u1 uN-1 UT = 

u0
T

u1
T

uN-1
T
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Note:

UT = U-1

Such that

-1 = U L-1 UT

ij = Sk Uik Lk UTkj

 = Sk lk uk uk
T

-1 = Sk lk-1 uk uk
T

k =1

N-1

Pseudoinverse 

Eigenvalue decomposition of 

In component form
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expressed in terms of kth eigenvalue lk and kth eigenvector uk of 

Bahar et al. (1998) Phys Rev Lett. 80, 2733

FOR MORE INFO...

 
ij

T

kkkBkji Tk uuRR
1

)/3(]ΔΔ[
−

=• lg

Several modes contribute to dynamics

 
ijBji Tk

1
)/3(ΔΔ

−
= • ΓRR g

kji

k

ji ]ΔΔ[ΔΔ RRRR •• =

Contribution of mode k

Contribution of mode k



52Bahar et al. (1998) Phys Rev Lett. 80, 2733

Slowest (global) modes (most 
collective and softest)→ function

Fastest (local) modes (at highest 
packing density regions) → stability

FOR MORE INFO...

Several modes contribute to dynamics

The first mode selects 

the ‘easiest’ collective motion



Output from DynOmics
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1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Output from DynOmics
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1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Animations (different modes)
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Summary - Gaussian network model (GNM)

 =

1 N

N

1

Several modes of motion 

contribute to dynamics

Kirchhoff matrix for inter-residue contacts

 
ii

T

kkkBkii Tk uuRR
1

)/3(]ΔΔ[
−

=• lg

Contact: Rij < 10Å

 iiBi TkR 12
3

−=D )/()( gMSF of residue i

= <(DRi)2>



Recipe (GNM)
Obtain the coordinates of network nodes from the PDB
Write the corresponding Kirchhoff matrix 
Eigenvalue decomposition of  yields 

the eigenvalues l1, l2, l3,….., lN-1 (and l0 = 0) 
and eigenvectors u1, u2, u3,…..uN-1 (and u0)

Properties

the eigenvalues scale with the frequency squared (li ~ wi
2)

eigenvector uk is an N-dim vector
the ith element of uk represents the displacement of node i in mode k
the eigenvectors are normalized, i.e. uk • uk = 1 for all k
as such, the squared elements of uk represent the ‘mobility’ distribution
dynamics results from the superposition of all modes
lk

-1/2 serves as the weight of uk → low frequency, higher weights
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ignm.ccbb.pitt.edu

Database of GNM results

Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422
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Easy access to precomputed results for 

95% of the PDB including 

structures beyond the scope of MD

protein-DNA/RNA complexes

biological assemblies (intact, 

biologically functional structures)

Easy to understand, visualize, make 

functional inferences for any structure

13.9% of the structures in the iGNM

2.0 (14,899 out of 107,201) contain 

>103 nodes

The biological assembly of 39,505 PDB 

structures is different from the  default 

structure reported in the PDBs (as 

asymmetric unit)

Why use iGNM2.0? 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4702874_gkv1236fig1.jpg


Motions in 3D

Anistropic Network Model 
(ANM)



Biological function entails both chemical and 
physical events

Molecular functions

Chemical changes

Physical changes

(Physical) dynamics

Bakan, A. and Bahar, I., 2009. PNAS, 106(34), pp.14349-14354.
Tu, X., Das, K., Han, Q., et al., 2010. Nature Nature Struc Mol Biol, 17(10), p.1202.
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ANM
RNase

HIV-1 reverse transcriptase



3N x 3N Hessian of ANM replaces the NxN Kirchhoff
matrix of GNM – to yield mode shapes in 3N-d space
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Note:

VT = V-1

Such that

H-1 = V K-1 VT

H = S V K VT

H = Sk kk vk vk
T

H-1 = Sk kk-1 vk vk
T

k =1

3N-6

Eigenvalue decomposition of H

In component form

ANM covariance matrix
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ANM covariance matrix (3Nx3N)

C11 C21 C13 C1N

C12 C22

CN1 CNN

C3N =

<DX1DX2> DX1DY2>  DX1DZ2>

 DY1DX2>  DY1DY2>  DY1DZ2>

 DZ1DX2>  DZ1DY2>  DZ1DZ2>

3N x 3N



Collective motions (ANM 1)

Anisotropic Network Model (ANM) 

http://dynomics.pitt.edu/

ANM 2

ANM 3

ANM 4

Energetica
l fa

vora
b

ility

Bahar, I., Lezon, T. R., Bakan, A., & Shrivastava, I. H. (2010). Chemical Reviews 110, 1463-1497.

Collective motions (softest modes) 
intrinsically accessible to HIV-1 
reverse transcriptase

http://dynomics.pitt.edu/


ANM server
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http://anm.csb.pitt.edu/

Eyal et al., Bioinformatics 2015

http://anm.csb.pitt.edu/


Output from ANM server
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1cot

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol
http://anm.csb.pitt.edu/cgi-bin/anm2.1/anm_solver.cgi


Softest modes are functional

open

closed

tense (T) relaxed (R)

Experiments Theory

T→ R transition of Hb
intrinsically favored by global 
dynamics Xu, Tobi &  Bahar
(2003) J. Mol.  Biol. 333, 153;

E coli adenylate kinase 
dynamics: comparison of elastic 
network model modes with 15N-
NMR relaxation data. Temiz 
NA, Meirovitch E, Bahar I.
(2004)  Proteins 57, 468. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=15382240&ordinalpos=30&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


71

DynOmics Portal http://dynomics.pitt.edu/

http://dynomics.pitt.edu/


Li et al (2017) Nucleic Acids Research 45:W374 - W380

enm.pitt.edu      

ENM Server



Thank you!
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Session I: Plotting <(DRi)
2> and 

contributions of selected modes
 from prody import *

 from numpy import *

 from matplotlib.pyplot import *

 ion()

 anm, cot = calcANM('1cot', selstr='calpha')

 anm

 cot

 figure()

 showProtein(cot)

 figure() 

 showSqFlucts(anm[:2], label= '2 modes')

 showSqFlucts(anm[:20], label= '20 modes')

 legend()
75

Application to cytochrome c

PDB: 1cot

A protein of 121 residues

cmd

ipython



Session 2:  Viewing color-coded 

animations of individual modes

 writeNMD('cot_anm.nmd', anm, cot)

 Start VMD

 select Extensions → Analysis →Normal 
Mode Wizard

 Select ‘Load NMD File’

76



Session 3: Cross-correlations 

<(DRi .DRj)> between fluctuations

 figure()

 showCrossCorr(anm[0])

 cross_corr = calcCrossCorr(anm[0])



Session 4: 

Viewing cross-correlations using VMD

 writeHeatmap('anm_cross1.hm', cross_corr)

 VMD – Load file

 Select cot_anm.nmd (from your local folder)

 Load HeatMap

 open anm_cross1.hm (from your local folder)
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